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This paper documents the procedure for designing a self-timed controller
for a successive-approximation A/D converter. From the functional
specification, a Signal Transition Graph is constructed to describe the
operation of the control circuit. This graph is then modified into a well-
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Abstract

This paper docittezits the procedlure for (iei'igning a witf-timed
controller for a .suceiiv-apprtxiinatiou A/D converter. From the
functional specification, a Signal Transition Graph is colnstrictL'd to
(leifbe the oper~ation of the control circuit. This graph is then mocli-
fled into a well-formed graph. Stich a graph can be transformed into a
deadlock-free and hazard-free implementation directly. The structure
of the control circuit and the logic equations are then derived directly
from the graph.

1. Introduction

This paper describes the design of a control circuit for a successive-
approximation A/D converter. This controller is an asynchronous self-
timed circuit in which all control actions are carried out through the use of
the Request/Acknowledge signaling protocol. From a functional specifica-
tion of the control circuit, a Signal Transition Graph (STO) is constructed
to describe the behavior of the circuit. It is then modified into a well-formied
graph, which is one satisfying the liveness and persistency properties. This
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nuniber MCS -7015255.X
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p STO can be converted directly into a logic circuit through a nuninber of syn-

thesis steps. A theory of the Signal Transition Graph model is discussed v
in [I11. Stillicient details about the model will be given here to explain the
synthesis process from src.

The main advantage of this realization method is that it can produce
a circuit directly frot a well-formed specification, and the circuit is speed-
independent, i.e., it operates correctly with any combination of delays of .4

logic gates. This feature is important for VLSI applications, as it is in-
elficient and not always possible to fine-tune the delays of logic gates on
chip to make an asynchronous system work. The STG model allows the
specification or concurrency, and hence the control logic synthesized from
this model supports concurrent operations. The traditional approach for
designing asynchronous state machines can only model sequential control
actions, and furthermore they are difficult to realize because of problems
due to races and hazards. In contrast, the approach presented here pro-
duces hazard-free control circuits capable of handling parallel operations.

2. Behavior Specification of the Controller

The block diagram of the successive approximation A/D converter is shown
in Figure 1. The input comparator compares the input voltage v,, and the
reference voltage v,,/and produces a digital 1-bit result. The comparator

has a control input Z, which zeroes it when Z, makes a low-to-high transi-
tion, and starts the comparison when Z, makes a high-to-low transition. It
also has a mutual-ezclusion circuit whose output is active (=1) only when
the comparator output is valid. This is required because the comparison
time is a function of the difference between the input voltage and the ref-
erence voltage; the smaller the difference, the longer the time it takes for
the comparator to decide. This is the familiar problem of metastability[2].

The latch and the combinational logic form a finite state machine per-
forming the successive approximation algorithm. Note that this machine
operates in pulse mode and is not the same as the self-timed controller
we are synthesizing. Due to the fact that this machine performs many
data-dependent operations, it is more economical and straight-forward to
implement it in this form instead of a Iluffman asynchronous state machine.
Data are latched on the rising transition of signal L, and held in registers
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Figure 1: Block diagram of the successive-approximation A/D converter

after L, goes low. Signal L. goes high as soon as data are latched, and goes
* low shortly after L, goes low. The reset input of the latch is controlled by.

signal R-, so that when Req is low, its outputs are reset to the appro-
priate initial state. Signal LB is the L t-Bit signal which goes high when
the converter has determined the last bit of the digital word. The D/A
converter at. the right of the diagram accepts the digital word produced
by the state machine and generates the analog voltage ve/. The combined
delay of the combinational logic and the D/A converter is matched by some
delay circuit as indicated by a dashed line from D, to D.. While it is pos-
sible to accomplish this timing constraint in a speed-independent manner
using dual rail coding, a simple delay circuit is more justifiable from an
engineering standpoint.

Initially, the state of the system is Req = Ack = ,= Z. = L, = L, = 0
and D, = D, = 1. Since Req = 0, the latch is initialized with LB = 0.
Thus, the and-gate whose input is Req is enabled and the and-gate whose
output is Ack is disabled. When Req is raised, Z, will go high and initiate a
cycle of the successive-approximation algorithm. After each cycle, Do will
restart another cycle until LB becomes high during the last cycle of the
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algorithm. In the last cycle, Ack is raised when A, goes high. After that,
Req drops, resetting LI1 and in turns Ack to low. At this point the circuit
returns to its iiitial state, ready for the next conversion.

3. Constructing a STG from the Specification A

A STG describing the operation of the self-timed controller is shown in
Figure 2. In this STO, vertices represent control events corresponding
directly to rising and falling transitions or signals in the controller; directed
arcs between transitions are tining precedence constraints. Transitions of
input signals to the circuit are underlined to distinguish them from those
of non-input signals. Precendence constraints of the former are given by
the specification and are assumed to be satisfied by the outside world,
whereas precedence constraints of the latter are generated and satisfied
by the circuit obtained from the STG. The dashed arcs in this figure are
not derived from the behavior specification of the circuit, but are extra
constraints to make the STG persistent, as will be explained later. The
meaning of the transitions are also described in this figure. The notation
a+ --, b- indicates that the rising of signal a has to precede the falling
of b, and that the transition b- is directly caused by a+. The notation -

a+ -p b- indicates that the occurrence of a+ precedes that of b- but
it may or may not directlyp precede b-. The And-fork relation GRA(b, c)
means that a --+ b and a --. c, and that the occurrence of a will cause the
concurrent occurrences of b and c. The And-join relation (a, b)RAC means
that a --, c and b --+ c, and that c occurs only after both a and b have
occurred.

There are two fundamental properties of STG concerning the synthesis
of hazard-free and deadlock-free control circuits, those of liveness and per-
sistency. A STG satisfying these properties is well-formed and possesses a
hazard-free and deadlock-free realization. If a STG is strongly connected
and for every transition of signal t, there exist at least a directed path from
t+ to t- and at least one from t- to t+, then the corresponding circuit real-
isation is live, i.e., free from deadlocks. The second property is persistency,
which states that if a signal is enabled in some state of the system, only
a transition of that signal can bring the system to another state in which
it is no longer enabled. In terms of STG notations, Fig. 3a illustrates an

4
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Figure 2: The STG description of the self-timed controller

example of a violation of persistency: transition a+ causes transition b+,
and also, transition a- is concurrent with b+. Thus, white b is going high,
transition a- may occur and remove the enabling condition of transition
b+, resulting in a hazard of signal b. Fig. 3b shows that an additional
constraint b+ -- , a- is required to satisfy the persistency property.

The STG in Fig. 2 is a strongly connected digraph which satisfies the
liveness property, therefore it corresponding circuit is live. The transitions
D,-, D.- and L.- are merely reset transitions of the reset signaling proto-
col. Two constraints in this graph deserve careful attention: the constraint
D+ +--* Z,- is required because a comparison is not allowed to begin until
after a new value of v,! is available; the other constraint L,- --* Z,+ makes
sure that the gating signal of the latch is turned off before the comparator
changes its output value.

4. Making the STG persistent

In general, a STG constructed from the behavior specification of a control
circuit alone may not be realizable. In order to have a deadlock-free and
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Figure 3: (a) A violation of persistency, (b) elimination of the violation

hazard-rree realization, it must satisfy two fundamental properties stated
above. In the original specification in Figure 2 (without the dashed arcs),
one tan inmmnediately detect two cases of violatidn of persistency. The fork

L. + RZA(D,,L,-) indicates that L,.+ causes D,+, but transition La-
which directly follows L,- is concurrent with D,+. Thus, while D,+ is
occurring, L.- may occur and remove the enabling condition of transition
D,+. The dashed arc D,+ - L,- eliminates this problem by adding the
constraint D,+ --,p L.4- to the graph. In this case a direct constraint
D,+ --* L.- is not allowed because L.- is a transition of an input node of
the corresponding circuit; constraints to input transitions are given by the
specification and there can be exactly one arc incident to an input transi-
tion. Similarly, the violation at the fork D, + R A(D,-, Z,-) is eliminated
by adding the dashed arc Z,- --+ D,- to the graph. After adding these two
constraints to eliminate violations of persistency, one can further eliminate
constraints L,+ --* L,- and D.+ -- D,- as they become redundant. At
this stage, an STG as shown in Figure 4a is obtained.

It turns out that this modified graph is still not implementable due to
the lack of internal state information. This is a subtle case of violation of
persistency which will be discussed later. An internal state signal called z is

introduced and the transitions x+, n- are added as shown in Figure 4b. In
order to understand how this node is introduced into the STG specification,
the synthesis process from STG needs be discussed before this issue can be 7
explored (Section 6.)

5. Synthesis of Circuit from STG

In the circuit realization of this graph, nodes L., D., Z, are input nodes to
the circuit, other nodes are non-input ones whose logic equations have to be

6
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Figure 4: (a) The STG with two violations of persistency eliminated, and ":
(b) the STG with the addition or the internal state z.

determined. The set of non-input nodes is {D7 , 4, Z,, 4. First, the STG L
~~~in Fig. 4b is decomposed into number of reduced graphls, as described below. . .

For each non-input node* it in set {D,, L,, Z,, 4}, we find its input set 1(t,) -

defined as the set of nodes whose transitions directly precede transition 4(, :

i.e., "--

Thus, in the STO in Fig. 4b, 1(L,) = (D,,Z,,Z}, 1(Z,) = {L,D.,z},
I(z) = (ZG, DG} and I(D,) = {L,,Z,,z}. The last insput set I(D,) is a
special case because even though node z does not directly precede D,, it is
included in I(D,) to avoid a violation of persistency, as will be discussed in

Section 6. A reduced graph GR~t1 ) of node t4 is then obtained by removing :..
all transitions in the STG that do not belong to the set ir) U (, keeping
all precedence constrainsins intact. The reduced graphs G (D,), G(Z),
Gn(L,) and G(z) are shown in Fig. 5. A reduced graph for a non-inputbedb"l

node, e.g. Z, contains transitions of nodes in the set (Z,) U {Z,}, and the

logic element that readies node 7 has one output terminal being Z, and -'

input terminals being those in the set 1(,,). This graph contains all the .:

.. . . . . . . . . .. . . . . . . .-

I~x)= (ZD.)and (D,)= ILZX). he lst isputset.(D-)is

"~~~~spca cas beas even '-"" " ""m " :.. thog node .x, does. no diecl prcd D• i.- is -o "•-".-- •• , •",
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Figure 5: Reduced graphs for non-input nodes in the set {Z,, L,, D,, z}

information about the timing behavior of logic element Z, as specified by
the precedence relations between its input and output terminals. A logic
equation can be determined from this specification as shown next.

The final step in the synthesis process is to derive logic equations from
reduced graphs. This step is illustrated for nodes Z, and z. The equations
for D, and L, will be given later and the readers can check them using the j

procedure described.
From the reduced graph GR(Z,), one can derive a state graph (Fig. 6a)

in which a state is a binary vector representing the state of terminals of logic
element Z,. This state is L,D zZ,. The transition from one state to another
involves a single variable change, and it corresponds to a signal-transition
in the reduced graph Gn(Z,) of Fig. 5a. For example, the state-transition
0101 --+ 0111 in Fig. 6a is caused by signal transition z+ in Gn(Z,). The
concurrent transitions of Do+ and L,- is described by a 2-cube of states, .

'

containing 2 possible sequence of state changes 1000 --* 1100 -. 0100 and
1000 -* 0000 --* 0100. The first state sequence takes places if D.+ occurs
before L,-, the second takes place if L,- occurs before D.+. Since the
circuit behaves exactly the same no matter which transition occurs first, it
is clear that. these two cases also cover the case when L,- and D.+ occur
at exactly the same time. This is how concurrency can be described in a
state-based formulation.
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Figure 6: Steps in the transformation from a reduced graph to the logic
equation for node Z,.

An output-conflict exists if a state has at least two next-states in which
values of the output variable are different. In this state graph, state 1000

e has two next-states 1100 and 0000, and they both contain Z, = 0, thus
there is no output-conflict. This state graph can be programmed into a
type of K-map called transition map shown in Fig. 6b. Each entry in this
map corresponds to a binary representation of state L,DoxZ,; arcs between
entries are walks between adjacent neighbors and they are state transitions
given by the state graph. In order to transform a transition-map into a K-
map, each entry is replaced by its next-state value of Z,. For example, in
state 0111, the next-state value of Z, is 0, thus this entry in the transition

map is replaced by a 0. If there are more than one next-state and their
values of Z, are different, i.e., if there is an output-conflict, it may not
be possible to determine the value of that entry in the K-map. The logic
equation of Z, can be found from this K-map to be

z, = LD..

The derivation of the logic equation for node z is more interesting because

this logic element not only has state information but also output-conflicts.
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Figure 7: Steps in the transformation from a reduced graph to the logic
equation for node z.

The state diagram derived from the reduced graph Gn(z) is shown in Fig.
7a. The concurrent transitions of Z.- and the chain Do- -- x- are de-
scribed by a structure consisting of two 2-cubes, with three possible allowed
state sequences {(111,011,001,000), (111, 101,001,000), (111, 101, 100,000)}.
The output conflict exists in state Z0D~x = 101, as z are different in the
next-states 001 and 100. However, this output-conflict is caused by concur-
rent transitions of an input signal Z. and the output z. In determining the
value of z for the K-map in state 101, transition due to x- leading to state
100 must be chosen over transition 101 -- 001 because the latter is caused
by input transition Z.-. The state graph in Fig. 7a shows that regardless
of whether one is in state 101 or 001, transition z- will always occur next
and the circuit behaves exactly the same. The transition map in Fig. 7b
doesnot contain the transition 101 -* 001. The K-map derived from this
state graph is shown in Fig. 7c, the logic equation is found to be

X = ZoDo + zDo.

This equation has the general form z = S + zR with S = ZoD. and
R = Th, its implementation is a set-reset flipflop whose output is x, the
set and reset inputs are ZaD. and D, respectively. Note that in this
implementation, it is required that S.R = 0 at all time.

Similarly, the sanie procedure can be applied to other reduced graphs

10
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Figure 8: The final circuit realiza-tion of the self-timed controller.

to obtain the logic equation for L, and D,. They are L,= D, ZG and-
D,= Z,.+ Lo+ D,. Thc equation for D, can be rewritten as D, = S5+ D,-R

with S5 = Z,, + Lo anrd R = z, and it is implemented as a set-reset ifipilop.
The reduced graph of D, in Fig. 5c shows that there is a time period during
which both Z, and z are high, causing both the set and reset inputs of the

' D, flipilop to be active. However, it also indicates that output D, is not to
be reset until after both. Z, and L0 go low, and therefore, until after the set
input goes low. The implementation of this flipilop is a set-dominant one,
as indicated by an asterisk in Fig 8. On the other hand, one can choose to 4

implement D, directly from the equation given above instead of a set-reset
fiipfiop and not worrying about this particular detail.

Finally, by putting all these elements together, one obtains the control
circuit for the A/D converter as shown in the dashed box of Fig. 8. The
readers should be able to verify that the self-timed control circuit shown
is speed-independent, i.e., it operates correctly with any combination of
delays of logic gates, assuming that the internal feedback delays of flipflops
are negligible compared to other loop delays in the control circuit.

6. Introducing Internal Node x

IThe synthesis procedure of the controller from a well-formed STG spec- .
ification have been described. We now return to the original STO specifi-
cation in Fig. 4a and explain how the internal node z is inserted into this--
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graph to give the well-forrmed specification in Fig. 4b. The sTG in F i. 4a..,

has non-input nodes D., L,, Z., and their input sets ire "

ID = (L,.,,Z,)
I (L,) = I{D,,D., Z.) ..

1()= {L,,Do, Zo}.

Their reduced graphs derived fronk the above STG are shown in Fig. 9. The•
state graphs of Gjt(D,) and Grt(L) are Figs. 9d and e, respectively. The
reduced graph of D, (Fig. 9a) shows tha t there is a'n instance of consecutive j

transitions of node Z, which directly precedes the output transition D. -

(Z,+ --# 7,,- - D,--). Generally, if an input signal to a logic element.-.
changes twice without any intervening transition which alters the state of "

,oO.

the system, a hazard may result at the output of that logic element. The"-
state graph of Ca(D,) (Fig. 9d) in which each state is of form LoZD,
contains two instances of each of states 101 and 001. In state 101, the""
output D, is not enabled and D. does not make a transition from this ;-

state. However, state 001 h.-s an output-conflict in the output variable D,
because the next-states of 001 are 011 and 000. This output-conflict causes [

hazard because whenever the logic element DA gets into the upper state 001 %" .
both transitions D.- and- Z,+ are enabled. If Z,+ occurs first, the state-
sequence 001 - 011 ---* 001 - 000 will take place and logic element D. '

behaves correctly. However, if the delay of logic element DA is smaller than .

that of Z,, thien transition D,- will occur first in state 001, even before :

the occurrence of the chain Z,+ -- Z,-. This is a malfunction. In the case -

when both Z. and D, have approximately the same delay, both transitions.-
D,- and Z,+ can occur simultaneously, resulting in a hazard at node D,. ..

The reduced graph of L. (Fig. 9b) contains a similar chain of transitions .'

Z.+ - Za- directly preceding an output transition L,+. However, this
case has no hazard because after transition Z.+ occurs, transitions Z.-
and D.,- will occur concurrently. The occurrence of D.,- changes the state i

of the logic element before Zo returns to low. Its state graph (Fig. 9e) ...

shows that output transition L,+ is enabled in the unique state0000, and ;..-

there is no output-conflict in this case. I
Thus, the hazard at node D. is caused by the lack of internal state

information to discern two instances of state 001. This problem shows

• 12 -
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up in the reduced graph GR(Dt) as a pair of consecutive transitions of
the same node Z,. In order to remove this problem, an extra transi-
tion such as z+ is inserted between these two transitions. Now, tran-
sition x- must be inserted into the graph to preserve its liveness. The
reduced graph GR(D,) shows that z- cannot be inserted (i) between the
pair (D,+, Z,+) or (Z,-, D,-) because this only produces the same prob-
lem but with two pairs of consecutive transitions of the same nodes; (ii)
into the path (D,+, La-, D,-) because z+, 2- become concurrent and this
would violate both the liveness and persistency conditions. Thus x- has
to be inserted into the path (D,-, Lo+,D,+). Considering the original
STG of Fig. 4a, this means that z- intist be inserted into the path contain
transitions (D,-, D.-, L,+, L.+, D,+). Furthermore, transitions of input
nodes D., L. and Z. can have only one incident arcs coming from tran-
sitions of their corresponding request signals D,, L, and Z,, respectively.
Thus 2- can be inserted between (D.-, L,+) as shown in Fig. 4b. In
this final well-formed specification, transition 2+ does not directly precede
transitions of node D,; however, as explained earlier, it is used as an input '.
to logic element D, to eliminate hazards at node D,.

Finally, note that transition 2- can also be inserted between (,.+, D,+)
in the STG in Fig. 4a. This results in another well-formed graph, from
which a different implementation can be obtained using the synthesis steps
described above. This fact indicates that the implementation is sensitive to
the particular form of the STG. This is understandable as the state graphs
extracted from STGs are unique state-based representations of the behavior
of a circuit.
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